Seminar in Deep
Reinforcement Learning

Introduction



Reinforcement Learning...




Why you should NOT use reinforcement learning...
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Why you should NOT use reinforcement learning...

Reward Engineering can be
hard - small auxiliary
rewards might become the
main focus of the agent
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http://www.youtube.com/watch?v=tlOIHko8ySg

Why is reinforcement learning promising?

e Humans are reinforcement learners
e Agents can outperform teachers

e Can model any (easy verifiable) task




Disclaimer: This is a seminar...

b

(almost) no basics participation required



Format

e Assigned topics

e 35 min presentation

e 10 min facilitated discussion
e \/oluntary coding challenge

Grade =
presentation + active participation (+ challenge)




Reinforcement Learning...




Environment




Deep Learning and Neural Architecture
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On Policy vs. Off-Policy vs. Batch-Policy Learning
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Deep reinforcement learning in continuous action spaces
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Hierarchical deep reinforcement learning
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e Deep reinforcement learning and stochastic planning in games
e Model based vs. model free deep reinforcement learning State

e Deep reinforcement learning in partial observability @
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Multi-Armed Bandits
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Non-differentiable optimization
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Meta-Learning non-differentiable
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Continual Learning
What do | have

to remember?
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Task?

Maximize the discounted cumulative reward in
each episode by finding a good policy
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Maximize the discounted cumulative reward in
each episode by finding a good policy
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Maximize the discounted cumulative reward in
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Maximize the discounted cumulative reward in
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Task?

Maximize the discounted cumulative reward in
each episode by finding a good policy

T Te
R" = Zt:o W’trt
m(als;) = Pr(als;)



How?

Estimate remainder of R™ In each state S,

- Y A
V7 (s) = Ex[d 0y v el

Q" (st,a¢) = rilay + Ep, [ZZ}:Hl v Tty ]
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Policy?

ﬂ_greedy (a|st) — ]-a:maxa/ Q*(st,a’)



Q-Learning Watkins (1989)

Qgreedy(st, at) — 7°t|at 7Y IMax, Qgreedy(stﬂaa')

iff Qgreedy — Q*
y(st,as) := r|a; + ymaxy Q(StJrlaa',)
5TD — y(5t7 a't) — Q(Sh a't)
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— minimize 5T D



Classical RL vs Deep RL
estimate Q(s, a)

V(s,a) e S x A

1T 2 3 4 5 6 7 8 9

o U s w N =
1

— approximate Q(, -)



Human-level control through DRL (Mnih et al., 2015)
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Deep Learning works for... RL?

e _lar sets...
many interactions

e ..with ]Jabeted data points...

self-labeled

e ..which are iid}?



Target Network

y(St,at) = T¢|ay + ymaxy Qe— (3t+17a,)

5TD — y(3t7a't) — QO(Staat)

o o . 2
— minimize 5T D



Replay Buffer

Learn from
samples




Task?

Maximize the discounted cumulative reward in
each episode by finding a good policy

R" = [, [Z;Fio Yo7y ]
mg(a|st) = Pr(als:)0)




maxy R
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Policy Gradient Derivation
VE,[R(7)] =V [ R(T)n(T)dT
= [ R(7)Vnr(r)dr
= [ R(T)m(T) V;ES) dr
= [R(7)nw(7)V log w(7)dT

= E,|R(7)V log 7 (7)]




mo(7) = P(s0) Hfio mo(at|st)p(st+1|8t,at)
— Vo logw@(T) = Zfio Vo logﬂg(at\st)
x| R(T)V log (7)]

= B [(XF 7'r) (g Vlog m(aest))




3 [(F0 7' ) (g V log m(ars))

///,Ca usality
= Eal 070 (X0 7" 're) V log m{ast)

[0t V7 (5¢)V log m(ar|st)]

b independent of action
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Asynchronous Methods for DRL (Mnih et al., 2016)
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Asynchronous Methods for DRL (Mnih et al., 2016)

maxy E,, [Zf;O(V” (s¢) — b) log mg(ay|st)]

b = V¢(st)

V™ (s:) = 30" e + 9"V (st4n)



Deep Learning works for... RL?

e _lar sets...
many interactions

e ..with ]Jabeted data points...

self-labeled

e ..which are iid}?



Learn from
all rollouts



Entropy Regularization

... act as random as possible

maxg Er, [Y,%0 (V™ (s;) — b) log mp (ay s¢)
— Mg (az|s:) log mg(az|s:)]




sample efficient | sample inefficient
slow to train | fast to train
(almost) deterministic | stochastic

only 1 network | 2 (1.5) networks




Coding Challenge

https://github.com/OliverRichter/DRL_Seminar_BlackJack



https://github.com/OliverRichter/DRL_Seminar_BlackJack
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