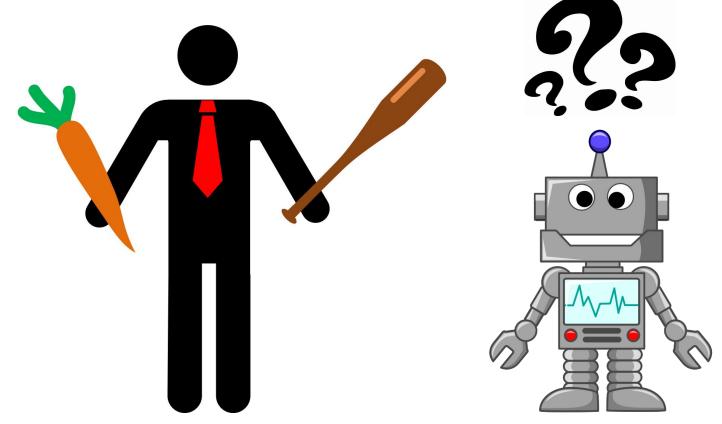
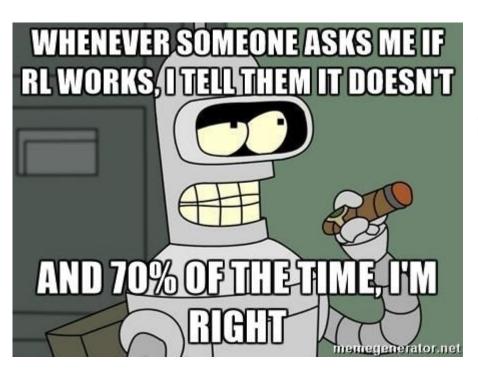
Seminar in Deep Reinforcement Learning

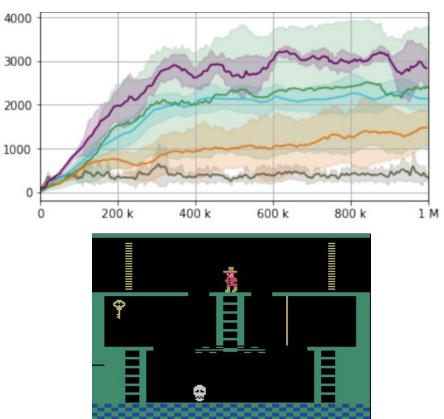
Introduction

Reinforcement Learning...



Why you should NOT use reinforcement learning...





Why you should NOT use reinforcement learning...

Reward Engineering can be hard - small auxiliary rewards might become the main focus of the agent

Why is reinforcement learning promising?

Humans are reinforcement learners

Agents can outperform teachers

Can model any (easy verifiable) task

Disclaimer: This is a seminar...

(almost) no basics

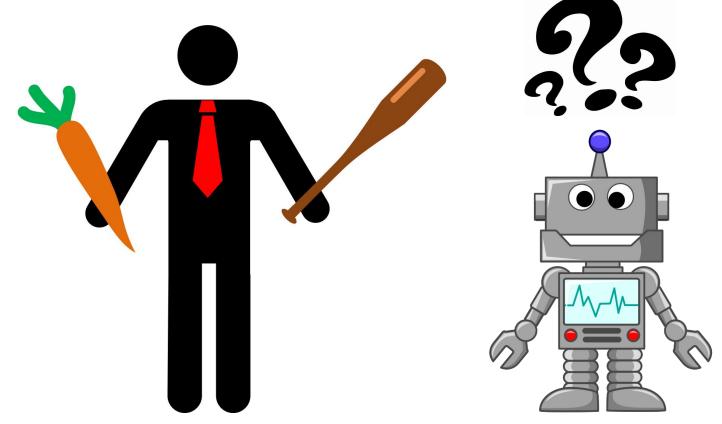
participation required

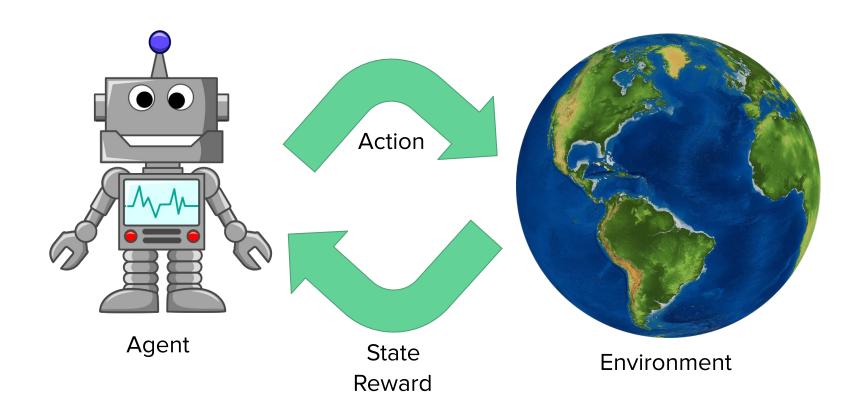
Format

- Assigned topics
- 35 min presentation
- 10 min facilitated discussion
- Voluntary coding challenge

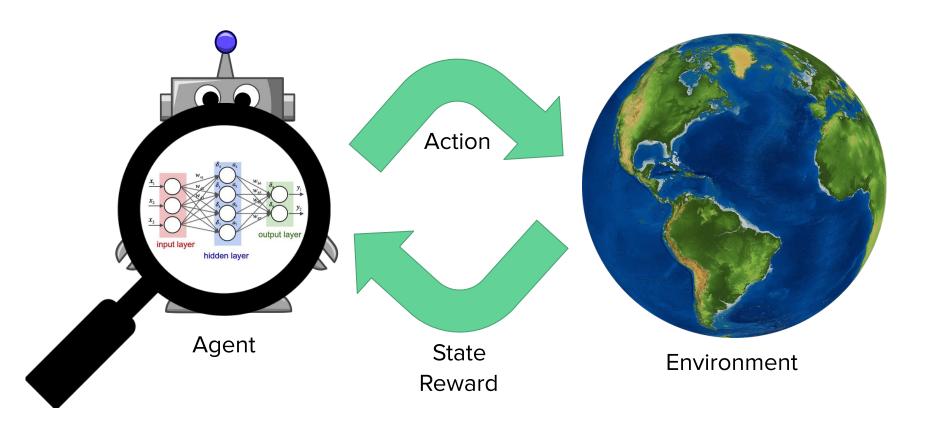
Grade = presentation + active participation (+ challenge)

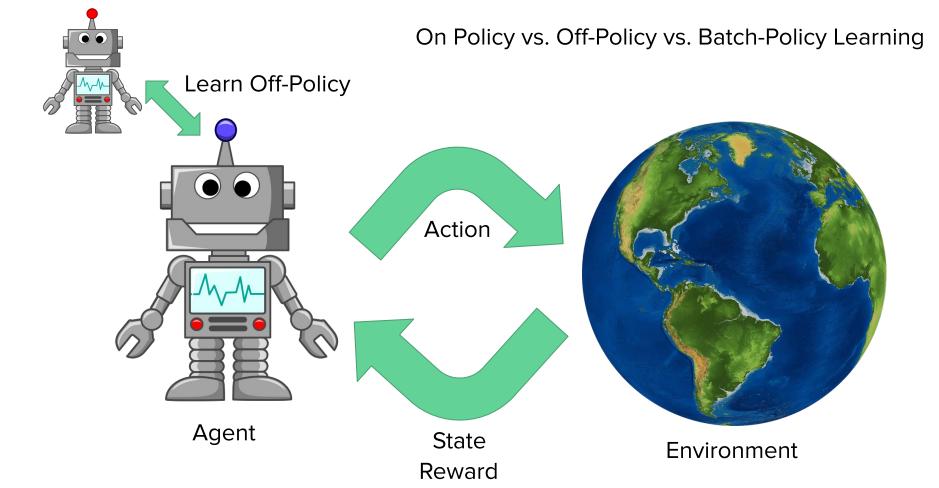
Reinforcement Learning...



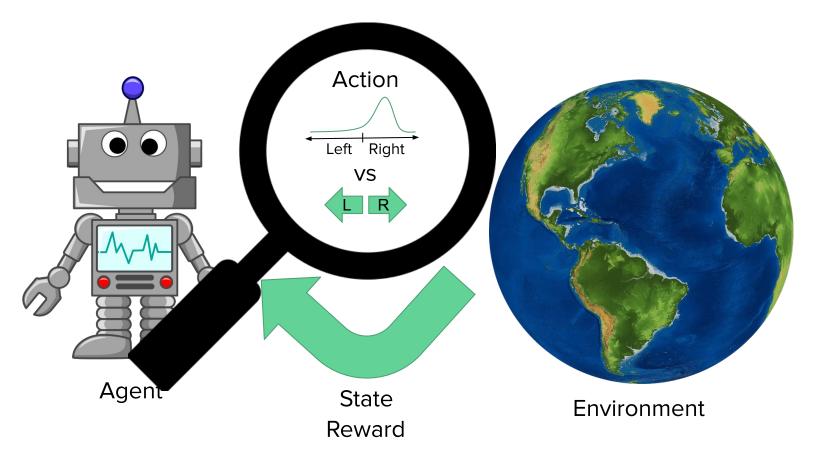


Deep Learning and Neural Architecture

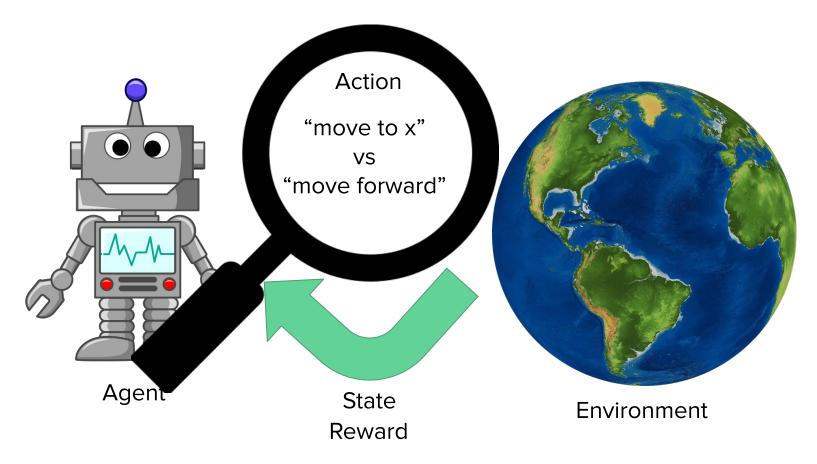




Deep reinforcement learning in continuous action spaces



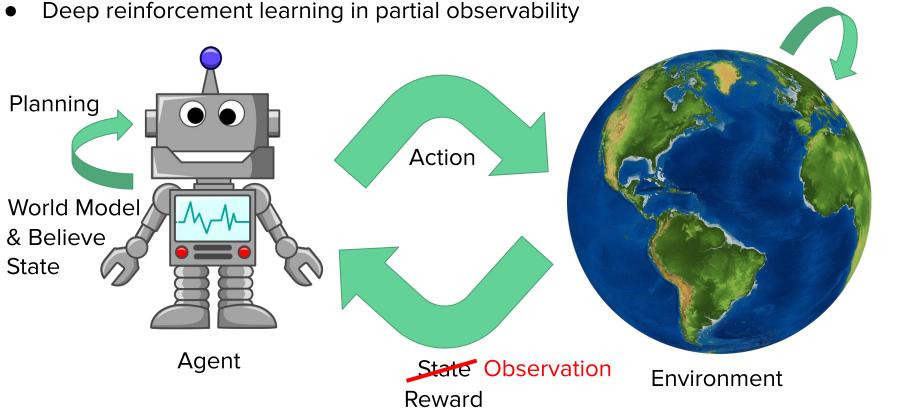
Hierarchical deep reinforcement learning



Deep reinforcement learning and stochastic planning in games

Model based vs. model free deep reinforcement learning

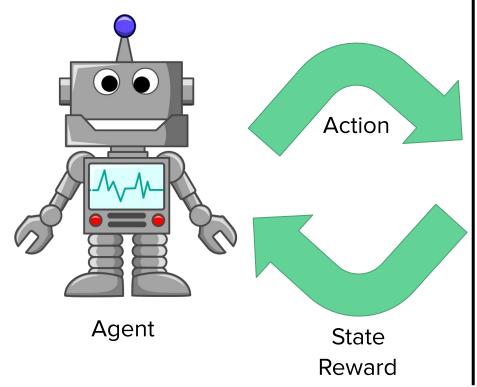
State



Multi-Armed Bandits



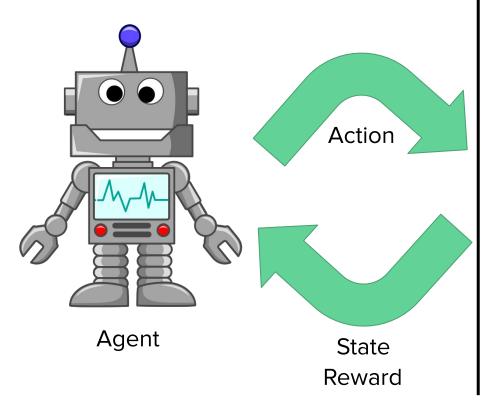
Non-differentiable optimization



non-differentiable

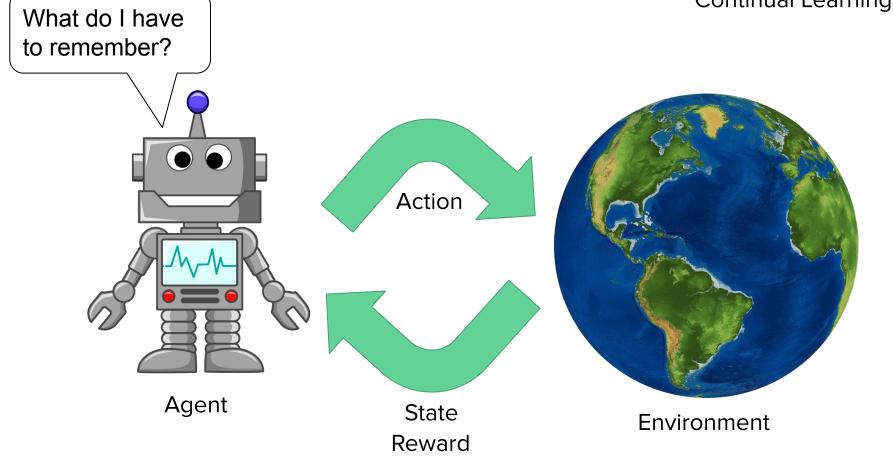
Environment

Meta-Learning



non-differentiable

Continual Learning



$$R = \sum_t \gamma^t r_t$$
 $\gamma \in (0,1]$

$$egin{aligned} R = \sum_{t=0}^{T_e} \gamma^t r_t \ \gamma \in (0,1] \end{aligned}$$

$$egin{aligned} R^\pi &= \sum_{t=0}^{T_e} \gamma^t r_t \ \pi(a|s_t) &= Pr(a|s_t) \end{aligned}$$

How?

Estimate remainder of R^{π} in each state s_t

$$V^{\pi}(s_t) = \mathbb{E}_{\pi}[\sum_{t'=t}^{T_e} \gamma^{t'-t} r_{t'}]$$

$$Q^{\pi}(s_t, a_t) = r_t |a_t + \mathbb{E}_{\pi | a_t} [\sum_{t'=t+1}^{T_e} \gamma^{t'-t} r_{t'}]$$

$$egin{aligned} V^{\pi}(s_t) &= \mathbb{E}_{\pi}[\sum_{t'=t}^{T_e} \gamma^{t'-t} r_{t'}] \ &= \mathbb{E}_{\pi}[r_t] + \gamma \mathbb{E}_{\pi}[\sum_{t'=t+1}^{T_e} \gamma^{t'-t-1} r_{t'}] \ &= \mathbb{E}_{\pi}[r_t] + \gamma V^{\pi}(s_{t+1}) \end{aligned}$$

$$Q^{\pi}(s_t, a_t) = r_t |a_t + \mathbb{E}_{\pi|a_t} [\sum_{t'=t+1}^{T_e} \gamma^{t'-t} r_{t'}]$$

 $= r_t |a_t + \gamma V^\pi(s_{t+1})|$

$$V^\pi(s_t) = \mathbb{E}_{a\sim\pi}[Q^\pi(s_t,a)]$$

Policy?

$$\pi^{greedy}(a|s_t) = \mathbf{1}_{a=\max_{a'} Q^*(s_t,a')}$$

Q-Learning

Watkins (1989)

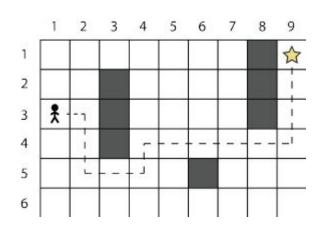
$$egin{aligned} Q^{greedy}(s_t,a_t) &= r_t | a_t + \gamma \max_{a'} Q^{greedy}(s_{t+1},a') \ & ext{iff } Q^{greedy} \equiv Q^* \ y(s_t,a_t) &:= r_t | a_t + \gamma \max_{a'} ilde{Q}(s_{t+1},a') \ \delta_{TD} &= y(s_t,a_t) - ilde{Q}(s_t,a_t) \end{aligned}$$

$$ightarrow$$
 minimize δ^2_{TD}

Classical RL vs Deep RL

estimate $ilde{Q}(s,a)$

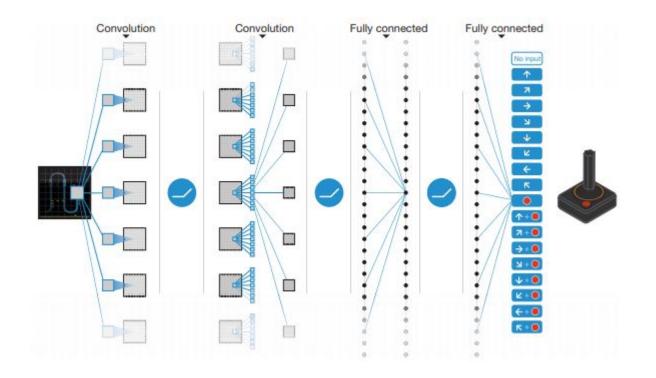
$$orall (s,a) \in \mathcal{S} imes \mathcal{A}$$



VS.

ightarrow approximate $ilde{Q}(\cdot,\cdot)$

Human-level control through DRL (Mnih et al., 2015)



Deep Learning works for... RL?

- …large data sets…
 many interactions
- ...with labeled data points...
 self-labeled
- → target network

...which are iid

→ replay buffer

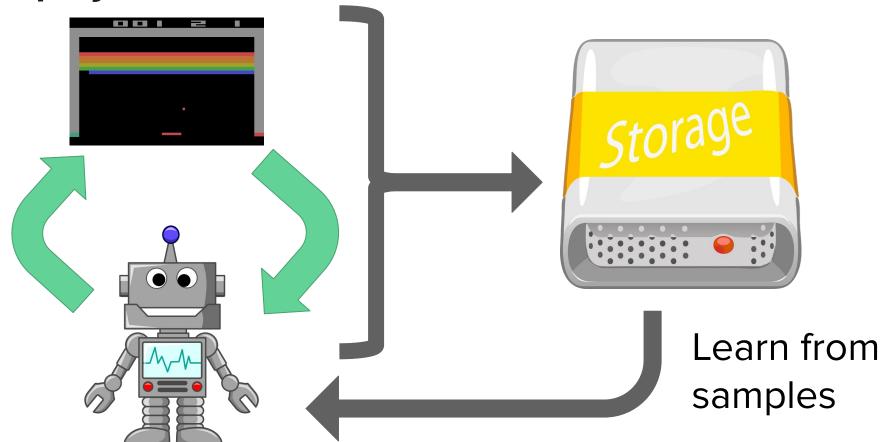
Target Network

$$y(s_t, a_t) := r_t | a_t + \gamma \max_{a'} ilde{Q}_{ heta^-}(s_{t+1}, a') |$$

$$\delta_{TD} = y(s_t, a_t) - ilde{Q}_{ heta}(s_t, a_t)$$

$$ightarrow$$
 minimize δ_{TD}^2

Replay Buffer



$$egin{align} R^\pi &= \mathbb{E}_\pi[\sum_{t=0}^{T_e} \gamma^t r_t] \ \pi_{\overline{ heta}}(a|s_t) &= Pr(a|s_t) heta) \ \end{aligned}$$

$\max_{ heta} R^{\pi_{ heta}}$

$$o heta_{k+1} = heta_k + lpha
abla_ heta R^{\pi_ heta}$$

$$abla_{ heta}\mathbb{E}_{ au\sim\pi_{ heta}}[R(au)]=?$$

Policy Gradient Derivation

$$egin{aligned}
abla \mathbb{E}_{\pi}[R(au)] &=
abla \int R(au)\pi(au)d au \ &= \int R(au)
abla \pi(au) rac{
abla \pi(au)}{\pi(au)}d au \ &= \int R(au)\pi(au)
abla \log \pi(au)d au \ &= \mathbb{E}_{\pi}[R(au)
abla \log \pi(au)] \end{aligned}$$

$$\pi_{ heta}(au) = \mathcal{P}(s_0) \prod_{t=0}^{T_e} \pi_{ heta}(a_t|s_t) p(s_{t+1}|s_t,a_t)$$

$$o
abla_{ heta} \log \pi_{ heta}(au) = \sum_{t=0}^{T_e}
abla_{ heta} \log \pi_{ heta}(a_t|s_t)$$

$$\mathbb{E}_{\pi}[R(au)
abla \log \pi(au)]$$

$$= \mathbb{E}_{\pi}[(\sum_{t=0}^{T_e} \gamma^t r_t)(\sum_{t=0}^{T_e}
abla \log \pi(a_t|s_t))]$$

$$\mathbb{E}_{\pi}[(\sum_{t=0}^{T_e} \gamma^t r_t)(\sum_{t=0}^{T_e}
abla \log \pi(a_t|s_t))]$$

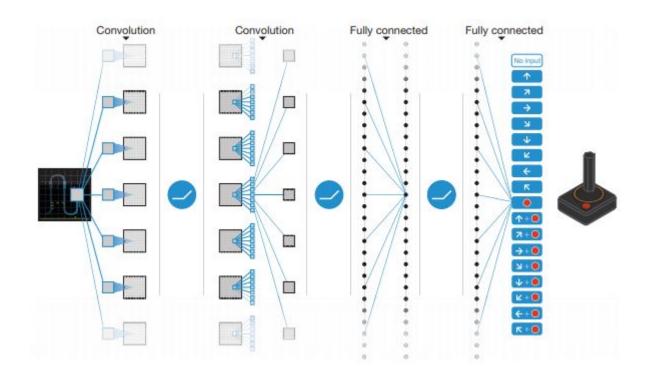
$$\stackrel{\mathsf{Causality}}{=} \mathbb{E}_{\pi}[\sum_{t=0}^{T_e}(\sum_{t'=t}^{T_e} \gamma^{t'-t} r_{t'})
abla \log \pi(a_t|s_t)]$$

$$= \mathbb{E}_{\pi}[\sum_{t=0}^{T_e} V^{\pi}(s_t)
abla \log \pi(a_t|s_t)]$$

b independent of action

$$= \mathbb{E}_{\pi}[\sum_{t=0}^{T_e} (V^{\pi}(s_t) - b)
abla \log \pi(a_t|s_t)]$$

Asynchronous Methods for DRL (Mnih et al., 2016)



Asynchronous Methods for DRL (Mnih et al., 2016)

$$\max_{ heta} \mathbb{E}_{\pi_{ heta}}[\sum_{t=0}^{T_e} (V^{\pi_{ heta}}(s_t) - b) \log \pi_{ heta}(a_t|s_t)]$$

$$b = ilde{V}_{\phi}(s_t)$$

$$V^{\pi_{ heta}}(s_t)pprox \sum_{t'=t}^{t+n} \gamma^{t'-t} r_{t'} + \gamma^n ilde{V}_{\phi}(s_{t+n})$$

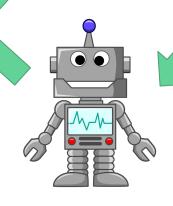
A3C

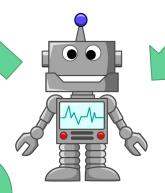
Deep Learning works for... RL?

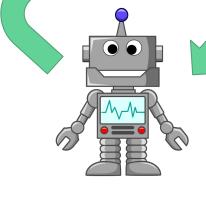
- ...large data sets... many interactions
- ...with labeled data points... → multi-step target self-labeled
- ...which are iid

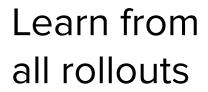
- → multiple actors
- → entropy regularization

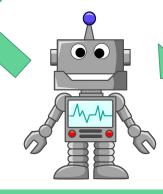
Multiple Actors











Entropy Regularization

... act as random as possible

$$egin{aligned} \max_{ heta} \mathbb{E}_{\pi_{ heta}} [\sum_{t=0}^{T_e} (V^{\pi_{ heta}}(s_t) - b) \log \pi_{ heta}(a_t|s_t) \ & - \lambda \pi_{ heta}(a_t|s_t) \log \pi_{ heta}(a_t|s_t)] \end{aligned}$$

DQN vs A3C

sample efficient | sample inefficient

slow to train | fast to train

(almost) deterministic | stochastic

only 1 network 2 (1.5) networks

Coding Challenge

https://github.com/OliverRichter/DRL Seminar BlackJack

References

Deep Reinforcement Learning Doesn't Work Yet, Irpan Alex, https://www.alexirpan.com/2018/02/14/rl-hard.html

Human Level Control Through Deep Reinforcement learning, *Volodymyr Mnih*, *Koray Kavukcuoglu*, *David Silver*, *Andrei A. Rusu*, *Joel Veness Marc G. Bellemare*, *Alex Graves*, *Martin Riedmiller*, *Andreas K. Fidjeland*, *Georg Ostrovski*, *Stig Petersen*, *Charles Beattie*, *Amir Sadik*, *Ioannis Antonoglou*, *Helen King*, *Dharshan Kumaran*, *Daan Wierstra*, *Shane Legg & Demis Hassabis*, Nature 2015

Asynchronous Methods for Deep Reinforcement Learning, *Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap, Tim Harley, David Silver, Koray Kavukcuoglu,* ICML 2016